World!Of
Numbers
HOME plate
WON |

EMBED
Palindromic Numbers
in other bases
rood comments



Introduction

Palindromic numbers are numbers which read the same from

 p_right left to right (forwards) as from the right to left (backwards) p_left
Here are a few random examples : 7, 3113, 44611644

Go directly to the Base 2 topic
Go directly to the Base 3 topic
Go directly to the Base 12 topic
Go directly to the Base 16 topic


led Base 2 led

Palindromes in bases 2 and 10.
The main source for this table comes from the following weblink.
Binary/Decimal Palindromes by Charlton Harrison (email) from Austin, Texas.
See also Sloane's sequences A007632 and A046472.

" I just finished writing a distributed client/server program for finding these numbers, and I currently
have it running on 4 different machines at the same time and I'm finding them A LOT faster. That's how
I was able to come up with those new ones. I'd say there are more to come in the near future, too."

[ December 1, 2001 ]
Charlton Harrison found a new record binarydecimal palindrome
110 0010111100 0010101010 1101000011 1010000010
0000101110 0001011010 1010100001 1110100011

7475703079870789703075747
The binary string contains 83 digits !


[ April 11, 2003 ]
Dw (email) wrote me the following :

"Using a backtracking solver, I have found larger numbers.
The first of these, which is the next after the one mentioned above, is
50824513851188115831542805 (86 bit, 3*5*11*11*17*17*83*11974799*97488286319).
There are no other 86 bit double palindromes.

I also have found two 89 bit double palindromes, but I am not sure if they
are the next ones. There may be some lower ones in 89 bit (haven't searched
that space completely yet) or in 87 bit that I haven't found.
These numbers are
532079161251434152161970235 (5*29*85839676103*42748430836381)
and
552963956270141072659369255 (5*7*7*71*441607*71984077228507867)
As can be seen by their factor representation, they are all composite."


50824513851188115831542805 {26}
10101000001010100000100110101010101001100000000110010101010101100100000101010000010101 {86}

532079161251434152161970235 {27}
11011100000100000001001010010000011001110101010101110011000001001010010000000100000111011 {89}

552963956270141072659369255 {27}
11100100101100110101011000010001001111100100100100111110010001000011010101100110100100111 {89}


[ April 13, 2003 ]
Dw (email) found four new ones including the 6th double palindromic prime :

"They are, in opposite sorted order:
138758321383797383123857831 (87 bit, composite, the only 87 bit double palindrome)
390714505091666190505417093 (89 bit, prime)
351095331428353824133590153 (89 bit, composite)
795280629691202196926082597 (90 bit, composite, not sure if this is the next one)."

When asking Dw for an explanation or description in a few words
what he meant by 'Using a backtracking solver' he replied :

"A backtracking solver is one that solves a problem made up of smaller
problems by trying every one except if it knows its earlier guesses make all
later ones depending on them impossible.

For instance, if you're in a maze and know that all corridors with green
walls eventually lead to a dead end, you can turn around as soon as you find
such a wall (backtrack) if you're trying to find the exit.

The smaller problem is avoiding a dead end, and the larger one is
finding the exit.

If you want the details:

My general strategy goes that to find a double palindromic number, the
solution to its palindromic decimal representation minus its binary
representation must be zero (since they are equal).

Furthermore, you can write a decimal palindrome like 101 * a + 10 * b, where
a and b are digits. The same can be done for binary, and you end up with a
giant (linear diophantine) equation of positive decimal and negative binary factors.

The factors can then be solved, one at a time, using the extended euclidean
algorithm. These are the smaller problems.

I also have a table of maximum and minimum values for each step. That way, if
it's impossible for the binary factors left to subtract enough from the
decimal factors to get zero (or the other way around), the solver backtracks."

[ April 13, 2003 ]
Dw found a new record binarydecimal palindrome
1010010001 1101011100 1110010101 0010100001 0100000010 1000010100 1010100111 0011101011 1000100101
795280629691202196926082597
The binary string contains 90 digits !
The decimal string contains 27 digits !


138758321383797383123857831 {27}
111001011000111001101111010110010111011100111001110111010011010111101100111000110100111 {87}

351095331428353824133590153 {27}
10010001001101011010101000000110111100000100000100000111101100000010101011010110010001001 {89}

390714505091666190505417093 {27}
10100001100110001000000111100001100011000111011100011000110000111100000010001100110000101 {89}

795280629691202196926082597 {27}
101001000111010111001110010101001010000101000000101000010100101010011100111010111000100101 {90}


[ May 21, 2003 ]
Dw (email) found a new Binary/Decimal Palindrome :

"I have been trying to find a polynomial time (growth of time needed is a
polynomial of number of bits) algorithm for finding double palindromes of
base 2 and 10. I haven't succeeded yet (my backtracking solver being
exponential), but I have found some interesting things.

For one, to find double palindromes in base 2 and 8 is very simple. Each base 8
digit maps to three bits. Therefore, every double palindrome must consist
of digits who themselves are double palindromes.

For instance, 757 as well as 575 is double palindromic. (These values are 495
and 381 in decimal respectively).
5 maps to 101 in binary, and 7 to 111 in binary.

I have found 1609061098335005338901609061 (91 bits composite),
and this is the only 91 bit one. No 92 bit double palindrome exists, and
93 bits seems to require several days of searching; therefore I'm trying to
find a polynomial time algorithm as mentioned above.

Another approach could be to create a networked version (to do the search on
multiple computers), but I haven't done that yet."

[ May 21, 2003 ]
Dw found a new record binarydecimal palindrome
1 0100110010 1111101111 1100001110 1100100000
0010001000 0000100110 1110000111 1110111110 1001100101

1609061098335005338901609061
The binary palindrome contains 91 digits !
The decimal string contains 28 digits !


1609061098335005338901609061 {28}
1010011001011111011111100001110110010000000100010000000100110111000011111101111101001100101 {91}


[ June 12, 2003 ]
Dw (email) found new Binary/Decimal Palindromes :

"I rewrote my program to use another strategy at finding the numbers, and this
let me search somewhat faster. As a result, I have found binary/decimal
palindromes up to 102 bits -- broken the 100 bit barrier so to speak.

These are:

None at 92 or 93 bits.
17869806142184248124160896871 (94 bits)
19756291244127372144219265791 (94 bits)
30000258151173237115185200003 (95 bits)
30658464822225352222846485603 (95 bits)
56532345659072227095654323565 (96 bits)
None at 97 or 98 bits.
378059787464677776464787950873 (99 bits)
1115792035060833380605302975111 (100 bits)
None at 101 bits.
3390741646331381831336461470933 (102 bits)

There may be higher ones at 102 bits; I haven't completed the search there."


17869806142184248124160896871 {29}
1110011011110110001110101001000001000000000011001100000000001000001001010111000110111101100111 {94}

19756291244127372144219265791 {29}
1111111101011000000101011001100101101101100001111000011011011010011001101010000001101011111111 {94}

30000258151173237115185200003 {29}
11000001110111110100001110001010010000110100011011000101100001001010001110000101111101110000011 {95}

30658464822225352222846485603 {29}
11000110001000000010110011101000100010000101111111110100001000100010111001101000000010001100011 {95}

56532345659072227095654323565 {29}
101101101010101001110101110101101111011010100000000001010110111101101011101011100101010101101101 {96}

378059787464677776464787950873 {30}
100110001011001001110111010000000001110111000111010111000111011100000000010111011100100110100011001 {99}

1115792035060833380605302975111 {31}
1110000101010101000110001001111111101011111110110110110111111101011111111001000110001010101010000111 {100}

3390741646331381831336461470933 {31}
101010110011000001001111000000100001000111101001011110100101111000100001000000111100100000110011010101 {102}


[ June 17, 2003 ]
Dw (email) adds :

" There are no numbers for 103 bits."

[ June 17, 2003 ]
Dw found a new record binarydecimal palindrome
10 1010110011 0000010011 1100000010 0001000111 1010010111
1
010010111 1000100001 0000001111 0010000011 0011010101

3390741646331381831336461470933
The binary palindrome contains 102 digits !
The decimal string contains 31 digits !


blue Binary/Decimal Palindromes by Charlton Harrison (email) : the longest list in existence ?


IndexDecimal equivalent of
binary palindrome
A007632
Binary
length
117131674457014330218696812033410754476131127
11632190158233101105022050110133285109123125
1159970387454991896491946981994547830799123
1149707999142717984907094897172419997079123
1135893890080115984244424895110800983985123
1121681824725831390428240931385274281861121
1111323475457008895965695988007545743231120
110998021119318189842248981813911120899120
109794397832642722540045227246238793497120
108710084230446469950059964644032480017120
107139124355701640720027046107553421931117
10696754720977532710701723577902745769117
10594285848717805140304150871784858249117
10476759778311938325452383911387795767116
10354074940541725088788052714504947045116
10210827628430039640604693003482672801114
10110652099006552766666725560099025601114
1009932525402284695775964822045252399113
991480869563960100770010693659680841111
981409460884147943003497414880649041111
97579782100975917393719579001287975109
96332997156422555464555224651799233109
95188726493036450333054630394627881108
943390741646331381831336461470933102
931115792035060833380605302975111100
9237805978746467777646478795087399
915653234565907222709565432356596
903065846482222535222284648560395
893000025815117323711518520000395
881975629124412737214421926579194
871786980614218424812416089687194
86160906109833500533890160906191
8579528062969120219692608259790
8455296395627014107265936925589
8353207916125143415216197023589
82PRIME!   39071450509166619050541709389
8135109533142835382413359015389
8013875832138379738312385783187
795082451385118811583154280586
78747570307987078970307574783
77726098868852025886889062783
76581298856301310365889218583
75121922815870107851822912181
74119431376139393167313491180
73113048607481718470684031180
729426180558383855081624977
719291340177595771043192977
707292808819585918808292776
691746199894868498991647174
6853947532817182357493569
6711435412612162145341167
669477815742247518774967
653288994178871499882365
641087974024420479780164
63967486872327868476964
62703626712621762630763
6131355815335185531359
6016120615225160216158
595595263707362595556
583762992707299267356
573707879686978707356
563410448202844014355
551827944080449728155
541081967191769180154
531045758747857540154
52314895577559841352
51179377077077397151
5093313836383133950
4955221253521225549
483414138831414345
47948487478484944
46PRIME!   728471717482743
45722752625722743
44565262226256543
43199992529999141
42179409690497141
41179270407297141
40147492229474141
39141389998314141
38123410401432141
3713652552563137
3611094884901137
357501515105737
343247929742335
331846212648135
321005090500134
31745111154733
30129088092131
2993947493930
2891037301930
2771984891730
261350053124
25584148523
24525952523
23507170523
22312921322
21197979121
20193439121
19175857121
1858558520
177373717
165383516
155323516
143999316
133222315
121535114
11900914
10744713
971710
858510
7PRIME!   3139
6997
5336
494
3PRIME!   73
2PRIME!   53
1PRIME!   32


Now that we entered the world of binary numbers let's find out more about Palindromic Squares in base 2.
I retrieved these from Sloane's table namely entry number A003166 !



IndexBasenumber
(base 10)
Square
(base 10)
Palindromic Square
(base 2)
24??.
23??.
22161545264280726096872411521207288392491000101000100111110110110111000111000010000100001110001110110110111110010001010001
( Discovered by Jon E. Schoenfield ) [ 82 ]
21202491428745410027787151914122750251000101011101100001111011100110011110110111100110011101111000011011101010001
( Discovered by Jon E. Schoenfield ) [ 76 ]
201071374004751147842258054053022562510011011100011111100011100111010011011011001011100111000111111000111011001
( Discovered by Jon E. Schoenfield ) [ 74 ]
191016573439931033421558771113318404910001100000011100000001101000101000000000010100010110000000111000000110001
( Discovered by Jon E. Schoenfield ) [ 74 ]
187379805072354461522905144808227291001001110011110010001011101111010100010101111011101000100111100111001001
( Discovered by Jon E. Schoenfield ) [ 73 ]
1717360493407301386731334490467649100000101011010010100110000110101010101011000011001010010110101000001
( Discovered by Jon E. Schoenfield ) [ 69 ]
1647705049392275771737302339372110011101111010011101001110110000000001101110010111001011110111001
( Discovered by Patrick De Geest ) [ 65 ]
1554295919929480469177872160110000010111010110110100111000100011100101101101011101000001
[ 59 ]
143901178731521919548340441291000011100101100011100011011001101100011100011010011100001
[ 58 ]
1329574243787463589042698969100110110101110111010101110111011101010111011101011011001
[ 57 ]
1268301841466514148398928110000100100101110101111100100111110101110100100100001
[ 53 ]
11179064993206427064370011001000111001111101110010100111011111001110001001
[ 49 ]
1012489657155991531977649100011011101111110011011110110011111101110110001
[ 48 ]
96435309414132019254811001011010101001000011001100001001010101101001
[ 46 ]
831680991003685127380110010010000011100010111101000111000001001001
[ 44 ]
71092489119353221512110001010111100100000100000100111101010001
[ 41 ]
61416832007407248910010101100100000100000100110101001
[ 35 ]
51819733113080910011101111001010011110111001
[ 29 ]
4119911437840811000100100011111100010010001
[ 28 ]
34523204575291001110000010100000111001
[ 25 ]
239101
[ 3 ]
1111
[ 1 ]



led Base 3 and base 9 led

You all probably noticed that I 'restrict' myself searching for large palindromes mainly in the decimal numbersystem.
Not so for Kevin Brown ! Here are a few palindromic tetrahedrals that he discovered in other base representations.



formula = k(k+1)(k+2)/6
kin base 3in base 9
111
2114
310111
420222
62002 
12111111444
13 555
14202202 
39112121211 
120 488884
392201000222000102 
4961102111111112011 
588 71066017
1093 505555505
88573 505055555550505



led Base 12 led

Alain Bex (email) gave also some palindromic squares in base 12 :

Note that again some of the basenumbers are palindromic themselves
and share many similarities with the palindromic squares in base 10 !
See sequence with index number A029737 in Sloane's table for these numbers.



IndexDecimal
equivalent
Basenumber
(base 12)
Palindromic Square
(base 12)
5754480422334449635653694
5651841421001244104A40144
5550486820420441496869414
5449953820110240441A14404
5349766620000240000800004
5230812512A39116497679461
5129032912002114404A40441
5028876711B13B141B1B1B141
4927145311111112345654321
4826958111001112102420121
4725257710220110444A44401
4625070510110110221412201
4524883310000110000200001
4488829434A51642662461
436399931053963848369
424541222344496787694
4143358211124456B6544
4043214210124414A4144
394190820304410212014
384161820102404090404
374147420002400080004
3628613146851AA222AA1
352557912977163151361
34255231292B1621B1261
33245991229B14A797A41
3224361121211468B8641
3124217120211444A4441
302407311B111420B0241
292276511211125686521
282262111111123454321
272247711011121242121
2621169103011060B0601
252102510201104060401
242088110101102030201
232073710001100020001
223796224449AAA94
2136142112445A544
20345820024008004
1920411221148A841
18188511111234321
17178310471093901
1617451015102A201
15172910011002001
1461142B160061
1330221244944
1229220441414
1129020240804
1018113116B61
917912B16661
816912114641
715711112321
614510110201
52622484
41311121
3339
2224
1111





led Base 16 led

[ December 28, 2008 ]
Matt S.
asked himself how difficult is it to generate the elements of these sequences ?

Numbers n such that n^3 is palindromic in base 16.

Palindromic cubes in base 16.

as he has derived e.g. 1152921504606846977 that's well beyond what
you have listed.

Any additional links/info you can give me would be appreciated.


Here is my reply after some perusing (PDG):

I found

10485773 = 1152924803144876033 = 1000030000300001{16}

You added

11529215046068469773 = 1532495540865888862346031014505056805788924816845176833 =
1000000000000003000000000000003000000000000001{16}

Is this how you derived the number by working backwards from
the pattern 1_0[x]_3_0[x]_3_0[x]_1 you discovered ?
Anyway well done and congratulations!

Ten years ago I submitted my sequences. So forgive me that I didn't
kept my original code. But from recollection I just searched in
a straightforward manner with the UBASIC program from zero till
I got tired with the last entry. Modern fast computers on the other
hand should have no problem in recreating the known sequences numbers
from A029735 & A029736.
Of course your number cannot yet be added as there might be other
solutions in between very probably.


Matt S. wrote :

Thanks for the reply.

The largest number I have right now is approx 281 bits. I have *many*
more too. Apologies for the rudimentary notation - this is all fairly
new to me. I'm actually generating these numbers with a friend, all
coming from a coded letter that was sent to fermilab
http://www.symmetrymagazine.org/breaking/2008/05/15/code-crackers-wanted/
I have little to no training in this area.

1_0[x]_3_0[x]_3_0[x]_1 is correct for the power of 3

It can be extended into other powers as well. For example :

['1', '0', '4', '0', '6', '0', '4', '0', '1']
and on and on.

I'd like to track down where the aforementioned letter came from - and
how this sequence is involved. Surely not a coincidence ? Any ideas ?
I'm eager to hear what your thoughts are regarding the letter / sequence.
As I said, I realize it's an odd request... so any insight is welcome.
If you need more data, please feel free to ask.













Sources Revealed

blue Binary/Decimal Palindromes by Charlton Harrison (email) : the longest list in existence ?

Neil Sloane's "Integer Sequences" Encyclopedia can be consulted online :
Neil Sloane's Integer Sequences

I sampled the following base X palindromic numbers sequences from the table :

%N Binary expansion is palindromic. under A006995 -- Sum of digits A043261
%N Palindromes in base 3 (written in base 10). under A014190 -- Sum of digits A043262
%N Palindromes in base 4 (written in base 10). under A014192 -- Sum of digits A043263
%N Palindromic in base 5. under A029952 -- Sum of digits A043264
%N Palindromic in base 6. under A029953 -- Sum of digits A043265
%N Palindromic in base 7. under A029954 -- Sum of digits A043266
%N Palindromic in base 8. under A029803 -- Sum of digits A043267
%N Palindromic in base 9. under A029955 -- Sum of digits A043268
%N Palindromes. under A002113 -- Sum of digits A043269
%N Palindromic in base 11. under A029956 -- Sum of digits A043270
%N Palindromic in base 12. under A029957 -- Sum of digits A043271
%N Palindromic in base 13. under A029958 -- Sum of digits A043272
%N Palindromic in base 14. under A029959 -- Sum of digits A043273
%N Palindromic in base 15. under A029960 -- Sum of digits A043274
%N Palindromic in base 16. under A029730 -- Sum of digits A043275

%N Palindromic in bases 2 and 3. under A060792.
%N Palindromic in bases 2 and 10. under A007632.
%N Palindromic in bases 3 and 10. under A007633.
%N Palindromic in bases 4 and 10. under A029961.
%N Palindromic in bases 5 and 10. under A029962.
%N Palindromic in bases 6 and 10. under A029963.
%N Palindromic in bases 7 and 10. under A029964.
%N Palindromic in base 8 and base 10. under A029804.
%N Palindromic in bases 9 and 10. under A029965.
%N Palindromic in bases 11 and 10. under A029966.
%N Palindromic in bases 12 and 10. under A029967.
%N Palindromic in bases 13 and 10. under A029968.
%N Palindromic in bases 14 and 10. under A029969.
%N Palindromic in bases 15 and 10. under A029970.

%N Square in base 2 is a palindrome. under A003166.
%N Squares which are palindromes in base 2. under A029983.
%N n^2 is palindromic in base 3. under A029984.
%N Squares which are palindromic in base 3. under A029985.
%N n^2 is palindromic in base 4. under A029986.
%N Squares which are palindromic in base 4. under A029987.
%N n^2 is palindromic in base 5. under A029988.
%N Squares which are palindromic in base 5. under A029989.
%N n^2 is palindromic in base 6. under A029990.
%N Squares which are palindromic in base 6. under A029991.
%N n^2 is palindromic in base 7. under A029992.
%N Squares which are palindromic in base 7. under A029993.
%N n^2 is palindromic in base 8. under A029805.
%N n in base 8 is a palindromic square. under A029806.
%N n^2 is palindromic in base 9. under A029994.
%N Squares which are palindromic in base 9. under A029995.
%N Square is a palindrome. under A002778.
%N Palindromic Squares. under A002779.
%N n^2 is palindromic in base 11. under A029996.
%N Squares which are palindromic in base 11. under A029997.
%N n^2 is palindromic in base 12. under A029737.
%N Squares which are palindromic in base 12. under A029738.
%N n^2 is palindromic in base 13. under A029998.
%N Squares which are palindromic in base 13. under A029999.
%N n^2 is palindromic in base 14. under A030072.
%N Squares which are palindromes in base 14. under A030074.
%N n^2 is palindromic in base 15. under A030073.
%N Squares which are palindromes in base 15. under A030075.
%N n^2 is palindromic in base 16. under A029733.
%N Palindromic squares in base 16. under A029734.

%N n^3 is palindromic in base 4. under A046231.
%N Cubes which are palindromes in base 4. under A046232.
%N n^3 is palindromic in base 5. under A046233.
%N Cubes which are palindromes in base 5. under A046234.
%N n^3 is palindromic in base 6. under A046235.
%N Cubes which are palindromes in base 6. under A046236.
%N n^3 is palindromic in base 7. under A046237.
%N Cubes which are palindromes in base 7. under A046238.
%N n^3 is palindromic in base 8. under A046239.
%N Cubes which are palindromes in base 8. under A046240.
%N n^3 is palindromic in base 9. under A046241.
%N Cubes which are palindromes in base 9. under A046242.
%N Cube is a palindrome. under A002780.
%N Palindromic cubes. under A002781.
%N n^3 is palindromic in base 11. under A046243.
%N Cubes which are palindromes in base 11. under A046244.
%N n^3 is palindromic in base 12. under A046245.
%N Cubes which are palindromes in base 12. under A046246.
%N n^3 is palindromic in base 13. under A046247.
%N Cubes which are palindromes in base 13. under A046248.
%N n^3 is palindromic in base 14. under A046249.
%N Cubes which are palindromes in base 14. under A046250.
%N n^3 is palindromic in base 15. under A046251.
%N Cubes which are palindromes in base 15. under A046252.
%N n^3 is palindromic in base 16. under A029735.
%N Cubes which are palindromes in base 16. under A029736.

%N Palindromic primes in base 2. under A016041.
%N Palindromic primes in base 3. under A029971.
%N Palindromic primes in base 4. under A029972.
%N Palindromic primes in base 5. under A029973.
%N Palindromic primes in base 6. under A029974.
%N Palindromic primes in base 7. under A029975.
%N Palindromic primes in base 8. under A029976.
%N Octal palindromes which are also primes. under A006341.
%N Palindromic primes in base 9. under A029977.
%N Palindromic primes. under A002385.
%N Palindromic primes in base 11. under A029978.
%N Palindromic primes in base 12. under A029979.
%N Palindromic primes in base 13. under A029980.
%N Palindromic primes in base 14. under A029981.
%N Palindromic primes in base 15. under A029982.
%N Palindromic primes in base 16. under A029732.

%N Palindromic primes in base 10 and base 2. under A046472.
%N Palindromic primes in base 10 and base 3. under A046473.
%N Palindromic primes in base 10 and base 4. under A046474.
%N Palindromic primes in base 10 and base 6. under A046475.
%N Palindromic primes in base 10 and base 7. under A046476.
%N Palindromic primes in base 10 and base 8. under A046477.
%N Palindromic primes in base 10 and base 9. under A046478.
%N Palindromic primes. under A002385.
%N Palindromic primes in base 10 and base 11. under A046479.
%N Palindromic primes in base 10 and base 12. under A046480.
%N Palindromic primes in base 10 and base 13. under A046481.
%N Palindromic primes in base 10 and base 14. under A046482.
%N Palindromic primes in base 10 and base 15. under A046483.
%N Palindromic primes in base 10 and base 16. under A046484.

%N Palindromic primes in bases 2 and 4. under A056130.
%N Palindromic primes in bases 2 and 8. under A056145.
%N Palindromic primes in bases 4 and 8. under A056146.

%N Not palindromic in any base from 2 to n-2. under A016038.
%N Smallest palindrome greater than n in bases n and n+1. under A048268.
%N First palindrome greater than n+2 in bases n+2 and n. under A048269.
%N The first non-trivial (k>n+2) palindromic prime in both bases n and n+2. under A057199.
%N Symmetric bit strings (bit-reverse palindromes),
including as many leading as trailing zeros. under A057890.

Click here to view some of the author's [P. De Geest] entries to the table.
Click here to view some entries to the table about palindromes.


More Integer Sequences from Sloane's OEIS database



  1. A043001 n-th base 3 palindrome that starts with 1. - Clark Kimberling
  2. A043002 n-th base 3 palindrome that starts with 2. - Clark Kimberling

  3. A043003 n-th base 4 palindrome that starts with 1. - Clark Kimberling
  4. A043004 n-th base 4 palindrome that starts with 2. - Clark Kimberling
  5. A043005 n-th base 4 palindrome that starts with 3. - Clark Kimberling

  6. A043006 n-th base 5 palindrome that starts with 1. - Clark Kimberling
  7. A043007 n-th base 5 palindrome that starts with 2. - Clark Kimberling
  8. A043008 n-th base 5 palindrome that starts with 3. - Clark Kimberling
  9. A043009 n-th base 5 palindrome that starts with 4. - Clark Kimberling

  10. A043010 n-th base 6 palindrome that starts with 1. - Clark Kimberling
  11. A043011 n-th base 6 palindrome that starts with 2. - Clark Kimberling
  12. A043012 n-th base 6 palindrome that starts with 3. - Clark Kimberling
  13. A043013 n-th base 6 palindrome that starts with 4. - Clark Kimberling
  14. A043014 n-th base 6 palindrome that starts with 5. - Clark Kimberling

  15. A043015 n-th base 7 palindrome that starts with 1. - Clark Kimberling
  16. A043016 n-th base 7 palindrome that starts with 2. - Clark Kimberling
  17. A043017 n-th base 7 palindrome that starts with 3. - Clark Kimberling
  18. A043018 n-th base 7 palindrome that starts with 4. - Clark Kimberling
  19. A043019 n-th base 7 palindrome that starts with 5. - Clark Kimberling
  20. A043020 n-th base 7 palindrome that starts with 6. - Clark Kimberling

  21. A043021 n-th base 8 palindrome that starts with 1. - Clark Kimberling
  22. A043022 n-th base 8 palindrome that starts with 2. - Clark Kimberling
  23. A043023 n-th base 8 palindrome that starts with 3. - Clark Kimberling
  24. A043024 n-th base 8 palindrome that starts with 4. - Clark Kimberling
  25. A043025 n-th base 8 palindrome that starts with 5. - Clark Kimberling
  26. A043026 n-th base 8 palindrome that starts with 6. - Clark Kimberling
  27. A043027 n-th base 8 palindrome that starts with 7. - Clark Kimberling

  28. A043028 n-th base 9 palindrome that starts with 1. - Clark Kimberling
  29. A043029 n-th base 9 palindrome that starts with 2. - Clark Kimberling
  30. A043030 n-th base 9 palindrome that starts with 3. - Clark Kimberling
  31. A043031 n-th base 9 palindrome that starts with 4. - Clark Kimberling
  32. A043032 n-th base 9 palindrome that starts with 5. - Clark Kimberling
  33. A043033 n-th base 9 palindrome that starts with 6. - Clark Kimberling
  34. A043034 n-th base 9 palindrome that starts with 7. - Clark Kimberling
  35. A043035 n-th base 9 palindrome that starts with 8. - Clark Kimberling

  36. A043036 n-th base 10 palindrome that starts with 1. - Clark Kimberling
  37. A043037 n-th base 10 palindrome that starts with 2. - Clark Kimberling
  38. A043038 n-th base 10 palindrome that starts with 3. - Clark Kimberling
  39. A043039 n-th base 10 palindrome that starts with 4. - Clark Kimberling
  40. A043040 n-th base 10 palindrome that starts with 5. - Clark Kimberling
  41. A043041 n-th base 10 palindrome that starts with 6. - Clark Kimberling
  42. A043042 n-th base 10 palindrome that starts with 7. - Clark Kimberling
  43. A043043 n-th base 10 palindrome that starts with 8. - Clark Kimberling
  44. A043044 n-th base 10 palindrome that starts with 9. - Clark Kimberling


  1. A043045 a(n)=(s(n)+2)/3, where s(n)=n-th base 3 palindrome that starts with 1. - Clark Kimberling
  2. A043046 a(n)=(s(n)+1)/3, where s(n)=n-th base 3 palindrome that starts with 2. - Clark Kimberling

  3. A043047 a(n)=(s(n)+3)/4, where s(n)=n-th base 4 palindrome that starts with 1. - Clark Kimberling
  4. A043048 a(n)=(s(n)+2)/4, where s(n)=n-th base 4 palindrome that starts with 2. - Clark Kimberling
  5. A043049 a(n)=(s(n)+1)/4, where s(n)=n-th base 4 palindrome that starts with 3. - Clark Kimberling

  6. A043050 a(n)=(s(n)+4)/5, where s(n)=n-th base 5 palindrome that starts with 1. - Clark Kimberling
  7. A043051 a(n)=(s(n)+3)/5, where s(n)=n-th base 5 palindrome that starts with 2. - Clark Kimberling
  8. A043052 a(n)=(s(n)+2)/5, where s(n)=n-th base 5 palindrome that starts with 3. - Clark Kimberling
  9. A043053 a(n)=(s(n)+1)/5, where s(n)=n-th base 5 palindrome that starts with 4. - Clark Kimberling

  10. A043054 a(n)=(s(n)+5)/6, where s(n)=n-th base 6 palindrome that starts with 1. - Clark Kimberling
  11. A043055 a(n)=(s(n)+4)/6, where s(n)=n-th base 6 palindrome that starts with 2. - Clark Kimberling
  12. A043056 a(n)=(s(n)+3)/6, where s(n)=n-th base 6 palindrome that starts with 3. - Clark Kimberling
  13. A043057 a(n)=(s(n)+2)/6, where s(n)=n-th base 6 palindrome that starts with 4. - Clark Kimberling
  14. A043058 a(n)=(s(n)+1)/6, where s(n)=n-th base 6 palindrome that starts with 5. - Clark Kimberling

  15. A043059 a(n)=(s(n)+6)/7, where s(n)=n-th base 7 palindrome that starts with 1. - Clark Kimberling
  16. A043060 a(n)=(s(n)+5)/7, where s(n)=n-th base 7 palindrome that starts with 2. - Clark Kimberling
  17. A043061 a(n)=(s(n)+4)/7, where s(n)=n-th base 7 palindrome that starts with 3. - Clark Kimberling
  18. A043062 a(n)=(s(n)+3)/7, where s(n)=n-th base 7 palindrome that starts with 4. - Clark Kimberling
  19. A043063 a(n)=(s(n)+2)/7, where s(n)=n-th base 7 palindrome that starts with 5. - Clark Kimberling
  20. A043064 a(n)=(s(n)+1)/7, where s(n)=n-th base 7 palindrome that starts with 6. - Clark Kimberling

  21. A043065 a(n)=(s(n)+7)/8, where s(n)=n-th base 8 palindrome that starts with 1. - Clark Kimberling
  22. A043066 a(n)=(s(n)+6)/8, where s(n)=n-th base 8 palindrome that starts with 2. - Clark Kimberling
  23. A043067 a(n)=(s(n)+5)/8, where s(n)=n-th base 8 palindrome that starts with 3. - Clark Kimberling
  24. A043068 a(n)=(s(n)+4)/8, where s(n)=n-th base 8 palindrome that starts with 4. - Clark Kimberling
  25. A043069 a(n)=(s(n)+3)/8, where s(n)=n-th base 8 palindrome that starts with 5. - Clark Kimberling
  26. A043070 a(n)=(s(n)+2)/8, where s(n)=n-th base 8 palindrome that starts with 6. - Clark Kimberling
  27. A043071 a(n)=(s(n)+1)/8, where s(n)=n-th base 8 palindrome that starts with 7. - Clark Kimberling

  28. A043072 a(n)=(s(n)+8)/9, where s(n)=n-th base 9 palindrome that starts with 1. - Clark Kimberling
  29. A043073 a(n)=(s(n)+7)/9, where s(n)=n-th base 9 palindrome that starts with 2. - Clark Kimberling
  30. A043074 a(n)=(s(n)+6)/9, where s(n)=n-th base 9 palindrome that starts with 3. - Clark Kimberling
  31. A043075 a(n)=(s(n)+5)/9, where s(n)=n-th base 9 palindrome that starts with 4. - Clark Kimberling
  32. A043076 a(n)=(s(n)+4)/9, where s(n)=n-th base 9 palindrome that starts with 5. - Clark Kimberling
  33. A043077 a(n)=(s(n)+3)/9, where s(n)=n-th base 9 palindrome that starts with 6. - Clark Kimberling
  34. A043078 a(n)=(s(n)+2)/9, where s(n)=n-th base 9 palindrome that starts with 7. - Clark Kimberling
  35. A043079 a(n)=(s(n)+1)/9, where s(n)=n-th base 9 palindrome that starts with 8. - Clark Kimberling

  36. A043080 a(n)=(s(n)+9)/10, where s(n)=n-th base 10 palindrome that starts with 1. - Clark Kimberling
  37. A043081 a(n)=(s(n)+8)/10, where s(n)=n-th base 10 palindrome that starts with 2. - Clark Kimberling
  38. A043082 a(n)=(s(n)+7)/10, where s(n)=n-th base 10 palindrome that starts with 3. - Clark Kimberling
  39. A043083 a(n)=(s(n)+6)/10, where s(n)=n-th base 10 palindrome that starts with 4. - Clark Kimberling
  40. A043084 a(n)=(s(n)+5)/10, where s(n)=n-th base 10 palindrome that starts with 5. - Clark Kimberling
  41. A043085 a(n)=(s(n)+4)/10, where s(n)=n-th base 10 palindrome that starts with 6. - Clark Kimberling
  42. A043086 a(n)=(s(n)+3)/10, where s(n)=n-th base 10 palindrome that starts with 7. - Clark Kimberling
  43. A043087 a(n)=(s(n)+2)/10, where s(n)=n-th base 10 palindrome that starts with 8. - Clark Kimberling
  44. A043088 a(n)=(s(n)+1)/10, where s(n)=n-th base 10 palindrome that starts with 9. - Clark Kimberling


  1. A016038 Strictly non-palindromic numbers: n is not palindromic in any base b with 2 <= b <= n-2. - N. J. A. Sloane.
  2. A100563 Number of bases less than sqrt(n) in which n is a palindrome. - Gordon Robert Hamilton





Contributions

Kevin Brown informed me that he has more info about tetrahedral palindromes in other base representations.
Link to his article :
point On General Palindromic Numbers thumb up

Alain Bex (email) sent me the first palindromic squares in base 12 - go to topic.

Dw (email) found several binary/decimal palindromes of record lengths - go to topic.







[up TOP OF PAGE]


(All rights reserved) - Last modified : May 1, 2013.
Patrick De Geest - Belgium flag - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com