A global search algorithm for solving systems of non linear polynomial equations

Oliver Salazar

January 4, 2004
Overview

• Introduction
 – define problem
 – methods
 – algorithm
 – introductory example

• Formalization
 – boxconsistency
 – interval extensions
 – pseudocode
Problems

• Applications in chemistry, economics, engineering,…

• Computationally Complex (NP-hard)

• find all solutions?

• provide proof for
 – uniqueness of solutions?
 – absence of solutions?
Methods

• Algebra
 – Gröbner bases ⇒ suffer poor scalability
 – Continuation methods ⇒ restrictive application

• Iterative numerical techniques
 – Newton, bisection ⇒ what to do if no/multiple solution?

• Interval techniques
 – Newton-like interval methods ⇒ how isolate single root?
 – ⇒ too slow
Solution by Pascal Van Hentenryck

Combine

• consistency technique from AI
 – discrete combinatorial problems (8-QUEENS)
 – eliminate inconsistent values

• intervals for mathematical/numerical correctness

Fast algorithm that provides proof for solutions/absence of solutions
Introductory example

\[
x_1^2 + x_2^2 - x_3 = 0
\]
\[
x_1^2 - x_2 = 0
\]
\[
10x_2 - x_3 = 0
\]

Find values for \(x_1, x_2, x_3 \in \mathbb{R} \)
Introductory example

Transform into an Interval system

\[X_1^2 + X_2^2 - X_3 = 0 \] \hspace{1cm} (1)
\[X_1^2 - X_2 = 0 \] \hspace{1cm} (2)
\[10X_2 - X_3 = 0 \] \hspace{1cm} (3)

Find canonical intervals for \(X_1, X_2, X_3 \in [-10^8, 10^8] \) by pruning
How to prune intervals?

Definition 1. An interval projection constraint \(< C, i >\) is the association of an interval constraint \(C\) and of an index \(i\) \((1 \leq i \leq n)\)

Illustration:
interval projection constraints of (2) are

\[
\begin{align*}
< X_1^2 - X_2 = 0 , 1 > \\
< X_1^2 - X_2 = 0 , 2 >
\end{align*}
\]
• From (1) and (2)

\[X_3 = X_1^2 + X_2^2 \] \hspace{1cm} (6)
\[X_2 = X_1^2. \] \hspace{1cm} (7)

\[\Rightarrow X_2, X_3 \in [0, 10^8] \]

• From (2)

\[X_2 = X_1^2. \] \hspace{1cm} (8)

\[\Rightarrow X_1 \in [-10^4, 10^4] \]

• From (1)

\[X_2^2 = X_3 - X_1^2. \] \hspace{1cm} (9)

\[\Rightarrow X_2 \in [0, 10^4] \]
• From (2)

\[X_1 = \pm \sqrt{X_2}. \] \hspace{1cm} (10)

\[\Rightarrow X_1 \in [-100, 100]. \]

• From (3)

\[X_3 = 10X_2. \] \hspace{1cm} (11)

\[\Rightarrow X_3 \in [0, 10^5]. \]

• From (1)

\[X_2^2 = X_3 - X_1^2 \] \hspace{1cm} (12)

\[\Rightarrow X_2 \in [0, \sqrt{10^5}] = [0, 316.227766016]. \]
• From (2)

\[X_1 = \pm \sqrt{X_2} \tag{13} \]

\[\Rightarrow X_1 \in [-\sqrt[4]{10^5}, \sqrt[4]{10^5}] \]

\[= [-17.78279410038923, +17.78279410038923] \]

• ...
\[X_1 \in [-3.24876838337, +3.24876838337] \] \hspace{1cm} (14)

\[X_2 \in [0, 10.27350768179303] \] \hspace{1cm} (15)

\[X_3 \in [0, 105.5449600878603] \] \hspace{1cm} (16)

Solutions are \((X_1, X_2, X_3) \in \{(0, 0, 0), (-3, 9, 90), (3, 9, 90)\}\).

Observations

- no solutions are lost!

- boundaries are close to solutions!
Key Idea of algorithm

1. preprocess the system until a stable state is reached (Boxconsistency)

2. if intervals are small enough \Rightarrow solution is found

3. otherwise branch
\[x \in [-3.249, +3.249] \]
\[y \in [0, 10.28] \]
\[z \in [0, 105.545] \]
Overview

• Introduction
 – define problem
 – methods
 – algorithm
 – introductory example

• Formalization
 – boxconsistency
 – interval extensions
 – pseudocode
Boxconsistency

First introduced by Benhamou et al

Definition 2. An interval projection constraint \(< C, i >\) is boxconsistent with respect to \(\vec{I} = (I_1, \ldots, I_n)\) iff

\[0 \in C(I_1, \ldots, I_{i-1}, \bar{l}, I_{i+1}, \ldots, I_n) \land 0 \in C(I_1, \ldots, I_{i-1}, \bar{r}, I_{i+1}, \ldots, I_n).\]

with \(\bar{l}\) the smallest interval enclosing \(\text{left}(I_i)\).
and \(\bar{r}\) the smallest interval enclosing \(\text{right}(I_i)\).
How ensure Boxconsistency?

- For each projection constraint
 - project on one variable
 - replace all other variables by their range
 - solve $\exists x_i \in I_i \mid 0 \in F(I_1, \ldots, I_{i-1}, x_i, I_{i+1}, \ldots, I_n)$
 - find leftmost/rightmost zeros
Interval Extensions(1)

Transformation to interval system

Definition 3. \(F : \mathcal{I}^n \to \mathcal{I} \) is an interval extension of \(f : \mathbb{R}^n \to \mathbb{R} \) iff

\[
\forall I_1, \ldots, I_n \in \mathcal{I} : r_1 \in I_1, \ldots, r_n \in I_n \Rightarrow f(r_1, \ldots, r_n) \in F(I_1, \ldots, I_n)
\]

Not uniquely defined!
Interval Extensions(2)

Example: function f

\[
\begin{align*}
 f_1(x_1; x_2) &= \frac{x_1x_2}{1 - x_1} \quad (17) \\
 f_2(x_1; x_2) &= \frac{x_2}{\frac{1}{x_1} - 1} \quad (18)
\end{align*}
\]

Evaluations

\[
\begin{align*}
 F_1([2, 3]; [0, 1]) &= \frac{[2, 3][0, 1]}{1 - [2, 3]} = [-3, 0] \quad (19) \\
 F_2([2, 3]; [0, 1]) &= \frac{[0, 1]}{[2, 3] - 1} = [-2, 0] \neq F_1([2, 3]; [0, 1]) \quad (20)
\end{align*}
\]
Interval Extensions (3)
Interval Extensions(4)

Computation of Boxconsistency depends on interval extension

- Natural Interval Extension
- Distributed Interval Extension
- Taylor Interval Extension

project onto one variable
solve \[\exists x_i \in I_i \mid 0 \in F(I_1, \ldots, I_{i-1}, x_i, I_{i+1}, \ldots, I_n) \]
Natural Interval Extension

Example:

\[f(x_1, x_2) = x_1^3 + x_2 \iff F(X_1, X_2) = X_1^3 + X_2 \] \hspace{1cm} (21)

Boxconsistency:

- project onto one variable
 - Apply Interval Newton method for finding zeros
 - combine with bisection
Distributed Interval Extension (1)

Example:

\[f(x_1, x_2) = x_1(x_1 + x_2) - 4 \]

(22)

Transform into

\[F(X_1, X_2) = X_1^2 + X_1X_2 - 4 \]

(23)

Boxconsistency:

- project on one variable
- sandwich \(f \) between upper/lower function \((f_u, f_l) \)
- find leftmost/rightmost zeros of these functions
Distributed Interval Extension (2)

\[f(x_1, x_2) = x_1(x_1 + x_2) - 4 \] \hspace{1cm} (24)

Transform into

\[F(X_1, X_2) = X_1^2 + X_1X_2 - 4 \] \hspace{1cm} (25)

with \(X_1, X_2 = [0, 1] \)

projecting \(F \) onto \(X_1 \)

\[F_p(X) = X^2 + [0, 1]X - 4 \] \hspace{1cm} (26)
Distributed Interval Extension (3)
from (26) the functions f_l and f_u constructed

$$f_u(x) = x^2 - 4 \quad (27)$$
$$f_l(x) = x^2 + x - 4 \quad (28)$$

with their Natural Interval Extensions

$$F_u(X) = X^2 - 4 \quad (29)$$
$$F_l(X) = X^2 + X - 4 \quad (30)$$
Distributed Interval Extension (4)

Advantages

- easy to calculate these upper and lowerbound functions
- effective pruning (numbers, no intervals)
- increase precision
Taylor Interval Extension

The Taylor interval extension transforms the function into Taylor form.

Definition 4. Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a function of the form $f = 0$ and have continue partial derivates. Let \vec{I} be an interval vector (I_1, \ldots, I_n) and m_i be the center of I_i. The Taylor interval extension of f developed around $\vec{C} = (m_1, \ldots, m_n)$ is

$$F(m_1, \ldots, m_n) + \sum_{i=1}^{n} \frac{\partial F}{\partial x_i}(I_1, \ldots, I_n)(X_i - m_i) = 0.$$
Taylor Interval Extension: Boxconsistency

projection of

\[F(\overline{m}_1, \ldots, \overline{m}_n) + \sum_{i=1}^{n} \frac{\partial F}{\partial x_i}(I_1, \ldots, I_n)(X_i - \overline{m}_i) \] \hspace{1cm} (31)

onto \(X_i \)

\[F(\overline{m}_1, \ldots, \overline{m}_n) + \sum_{j=1}^{i-1} \frac{\partial F}{\partial x_j}(I_1, \ldots, I_n)(I_j - \overline{m}_j) + \frac{\partial F}{\partial x_i}(I_1, \ldots, I_n)(X_i - \overline{m}_i) + \sum_{j=i+1}^{n} \frac{\partial F}{\partial x_j}(I_1, \ldots, I_n)(I_j - \overline{m}_j) \] \hspace{1cm} (32)
Solve to X_i

$$X_i = m_i - \frac{1}{\frac{\partial F}{\partial x_i}(I_1, \ldots, I_n)} + \sum_{j=1, j \neq i}^n \frac{\partial F}{\partial x_j}(I_1, \ldots, I_n)(I_j - m_j) + F(m_i, \ldots, m_n)$$

(33)

• no overestimation (centered form)

• weak pruning on large intervals

• powerful pruning on small intervals

• exact range ⇒ proof for solutions!
Pseudocode

Func. Search(\mathcal{S}: Set of Constraints; \vec{I}_0 : intervals $\in \mathcal{I}^n$): Set of \mathcal{I}^n

Begin

\[\vec{I} := \text{PRUNE}(\mathcal{S}, \vec{I}_0); \]

if $\neg \text{IsEmpty}(\vec{I})$;

\[\text{if IsSmallEnough}(\vec{I}) \text{ then} \]

\[\text{return } \{\vec{I}\}; \]

else

\[< \vec{I}_1, \vec{I}_2 > := \text{BRANCH}(\vec{I}); \]

\[\text{return Search}(\mathcal{S}, \vec{I}_1) \cup \text{Search}(\mathcal{S}, \vec{I}_2) \]

endif

doelse

\[\text{return } \emptyset \]

End
Func. PRUNE(S:Set of Constraints; \vec{I}:intervals$\in\mathcal{I}^n$)
Begin
 repeat
 $\vec{I}_p = \vec{I}$
 BOXPRUNE(NE(S_E)\cup DE(S_E), \vec{I});
 BOXPRUNE(TE(S_E), \vec{I});
 until $\vec{I} = \vec{I}_p$
End

with $S_E = \{(c, i)|c \in S \text{ and } 1 \leq i \leq n\}$
Conclusion

- Benchmarks show fast results
 - competes well with state of the art continuing methods
 - outperforms traditional interval methods
 - Broyden Banded functions
 for 320 variables are solved in 150 seconds (linear!)

\[f_i(x_1, \ldots, x_n) = x_i(2 + 5x_i^2) + 1 - \sum_{j \in J-i} x_j(1 + x_j) \quad (1 \leq i \leq n) \]

with \(J_i = \{ j | j \neq i \text{ and } \max(1, i - 5) \leq j \leq \min(n, j + 1) \} \)
and \(x_i = [-10^8, 10^8] \)
• **proof** for solution

• combination of extensions seem to provide substantial pruning
 – distributed interval extension: far from solution
 – Taylor interval extension: close to solution

• further active interval research
 – how solve overestimation of range?
 – does there exist an extension that combines
 * powerfull pruning?
 * no overestimation?
References

