System Level Simulation Benefits from Frequency Domain
Behavioral Models of Mixers and Amplifiers

Jan Verspecht, Frans Verbeyst, Marc Vanden Bossche, Patrick Van Esch

Slides presented at the 1999 European Microwave Conference
System Level Simulation Benefits from Frequency Domain Behavioral Models of Mixers and Amplifiers

Jan Verspecht, Frans Verbeyst
Marc Vanden Bossche and Patrick Van Esch

Hewlett-Packard NMDG
Outline

• Introduction

• Frequency Domain Black-Box Models: Concepts

• Practicalities: - Time Delay Invariance
 - Linearization
 - ANN + Volterra Series

• Examples: Simulation and Measurement Based

• Conclusions
Introduction (1)

- Simulators significantly decrease time-to-market for RF/microwave designs
- Problems experienced with large-signal behavior:
 - model accuracy
 - circuit complexity
Introduction (2)

- Solution: Frequency Domain Behavioral Models
 - Application Specific
 - Can Be Derived from Measured Data
 (fast accurate transistor model)
 - Can Be Derived from Simulated Data
 (reduce complex circuits)
Frequency Domain Behavioral Models? (1)

\[B_{ij} = F_{ij}(A_{kl}) \]

“Describing Function”
Frequency Domain Behavioral Models? (2)

Set of Experiments

NNMS Measurements $\rightarrow \begin{bmatrix} A & B \\ A & B \\ \vdots & \vdots \end{bmatrix}$ \rightarrow Harmonic Balance Simulations

Approximate $F(A)$ by $G(A, \alpha, \beta, \ldots)$

Find α, β, \ldots minimizing

$$\int \|F(A) - G(A, \alpha, \beta, \ldots)\|^2 dA$$

experimental A
Frequency Domain Behavioral Models
Accurately Describe:

- Compression characteristic
- AM-PM
- PAE
- Harmonic Distortion
- Fundamental loadpull behavior
- Harmonic loadpull behavior
- Time domain voltage & current

Influence of bias and fundamental frequency can be included
Practicality 1: Time Delay Invariance

Describing Function $F(A)$ is fitted by $G(A, \alpha, \beta, \ldots)$ parameters.

$G(A, \alpha, \beta, \ldots)$ has a very important constraint: delaying A has to result in same delay for B.

Mathematically expressed:

for every τ

$$G(A e^{j\omega \tau}, \ldots) = G(A)e^{j\omega \tau}$$
Practicality 2: Linearization (1)

In general superposition

$$F(A + A') \neq F(A) + F(A')$$

Harmonics are relatively small

Superposition harmonics only OK
Practicality 2: Linearization (2)
Practicality 3: Curve Fitting (1)

$ANN = \text{smooth multidimensional fitters}$

$V_{\text{collector}} = 4.5 \text{ V}$

Si BJT
Fund @ 1.8 GHz
Practicality 3: Curve Fitting (2)

HDA (Output in dBm)

Input Power (dBm)

ANN artifact

Combine with Volterra Series for accurate low power behavior.
Example Applications:
1.8 GHz Silicon Power Transistor (1)

Measurement Setup

\[A_{11} \]

\[A_{ij} \neq A_{11} \]

\[Z_{match} \]

E4142 - BIAS

NNMS

TUNER
Example Applications:
1.8 GHz Silicon Power Transistor (2)

Results
Example Applications:
Models based on Harmonic Balance Simulations

- Gilbert cell mixer
 - 20 transistors
 - Behavioral Model

- Amplifier
 - Transistor + matching circuit
 - Behavioral Model

Comparison
Cascaded Detailed Circuits versus Cascaded Behavioral Models
Slow: Generally Applicable
Fast: Application Specific
Example Applications:
Comparison of Behavioral Models and Circuits

[Graph showing RF output power and phase vs. IF input power for 1GHz, 2GHz, and 3GHz.]
Conclusion

- Frequency domain behavioral models for mixers and amplifier circuits can be constructed based on:
 - time-invariant describing functions
 - linearization
 - curve fitting techniques
- The models can be based on simulations or measurements
- The models increase simulator efficiency, accuracy