Measuring Transistor Dynamic Loadlines and Breakdown Currents under Large-Signal High-Frequency Operating Conditions

Jan Verspecht, Dominique Schreurs

Slides Presented at the 1998 IEEE MTT-S International Microwave Symposium

© 1998 Agilent Technologies - Used with Permission
Measuring Transistor Dynamic Load Lines and Breakdown Currents under Large-Signal High-Frequency Operating Conditions

Jan Verspecht
Hewlett-Packard NMDG
Pleinlaan 2
1050 Brussels
Belgium
fax 32-2-629.28.50
tel. 32-2-629.28.86
email janv@belgium.hp.com

Dominique Schreurs
K.U.Leuven ESAT-TELEMIC
Overview

- Introduction
- The Measurement System
- Dynamic LoadLines
- RF Breakdown Currents
- Degrading Devices under Stress
- Conclusions
Introduction

New Measurement Technology: Nonlinear Network Measurement System

• Periodic Large-Signal High-Frequency Voltage & Current Waveforms

Exciting Applications:

• State-of-the-Art Power Amplifier Design
• Studying Reliability Issues: Breakdown and Degradation
Nonlinear Network Measurement System

NNMS measures V_1, I_1, V_2, I_2 time domain waveforms (under periodic excitation)
Measuring the Dynamic Loadline

![Diagram showing Drain Voltage vs. Drain Current with dynamic load line and gate voltage labels.](image)

- Drain Voltage (V):
 - 0.0V
 - -0.5V
 - -1.0V
 - -1.5V
 - -2.0V

- Drain Current (mA):
 - 0
 - 20
 - 40
 - 60
 - 80

- Gate Voltage:
 - 1 GHz

Network Measurement and Description Group
Time Domain Waveforms

- Gate voltage vs. time: $V_{gs} \ (V)$
- Drain voltage vs. time: $V_{ds} \ (V)$
- Gate current vs. time: $I_{gs} \ (mA)$
- Drain current vs. time: $I_{ds} \ (mA)$
Gate - Drain Breakdown

V_{gs} (V)

V_{ds} (V)

I_{gs} (mA)

I_{ds} (mA)

$I_{breakdown}$

1 GHz
Drain - Source Breakdown

\[V_{gs} (V) \]

\[V_{ds} (V) \]

\[I_{gs} (mA) \]

\[I_{ds} (mA) \]

1 GHz
<table>
<thead>
<tr>
<th>V_{gs} (V)</th>
<th>V_{ds} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.2 to -1.6</td>
<td>12.5 to 13.0</td>
</tr>
<tr>
<td>-4.0 to -2.0</td>
<td>11.5 to 12.0</td>
</tr>
<tr>
<td>-6.0 to -4.0</td>
<td>10.5 to 11.0</td>
</tr>
<tr>
<td>-8.0 to -6.0</td>
<td>9.5 to 10.0</td>
</tr>
<tr>
<td>-10.0 to -8.0</td>
<td>8.5 to 9.0</td>
</tr>
<tr>
<td>-12.0 to -10.0</td>
<td>7.5 to 8.0</td>
</tr>
</tbody>
</table>

I_{gs} (mA) and I_{ds} (mA) graphs show similar patterns with peaks at specific intervals. $I_{breakdown}$ is indicated at 1 GHz on the diagram.
Forward Gate Conductance

<table>
<thead>
<tr>
<th>V_{gs} (V)</th>
<th>V_{ds} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I_{gs} (mA)</th>
<th>I_{ds} (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Network Measurement and Description Group
Degradation under RF Stress

\[V_{gs} \text{ (V)} \quad V_{ds} \text{ (V)} \]

\[I_{gs} \text{ (mA)} \quad I_{ds} \text{ (mA)} \]

1 GHz

I\text{breakdown}

1 GHz
Evolution of Gate Current

I_{gs} (mA)

time under stress (minutes)

time (ns)
Evolution of Minimum Gate Current

Minimum I_{gs} versus time

$log\left(\frac{\text{min}(I_{gs})}{1A}\right)$

opposite phase

in phase

$\sqrt{\text{time}}$ (\sqrt{\text{minutes}})
Change of Transconductance

$g_m \text{ (mS/mm)}$

$V_{gs} \text{ (V)}$

B E F O R E

A F T E R
Conclusions

It has been shown how the NNMS measures:

• dynamic load lines
• breakdown current and voltage waveforms
• component degradation under stress under high-frequency large-signal operating conditions