Everything you've always wanted to know about Hot-S22
(but we're afraid to ask)

Jan Verspecht

Slides presented at the Workshop
Introducing New Concepts in Nonlinear Network Design
(International Microwave Symposium 2002)
Everything you’ve always wanted to know about “Hot-S_{22}”
(but were afraid to ask)

Jan Verspecht
Agilent Technologies
Purpose

- Convince people of a better “Hot S_{22}”
- Show that technology is fun (sometimes)
• Introduction: What is “Hot S_{22}”?
• Getting and interpreting experimental data
• Confront classic approaches with data
• Derivation of the extended “Hot S_{22}” theory
• Confront extended “Hot S_{22}” with data
• Conclusion
What is “Hot S$_{22}$”?

• D.U.T. behavior is represented by pseudo-waves (A_1, B_1, A_2, B_2)

• “Hot S$_{22}$” describes the relationship between B_2 and A_2

• Valid under “Hot” conditions (A_1 significant)
Experimental investigation

- Take a real life D.U.T. (CDMA RFIC amplifier)
- Apply an A_1 signal
- Apply a set of A_2’s
- Look at the corresponding B_2’s
- Mathematically describe the relationship between the A_2’s and B_2’s
- Repeat for different A_1’s
Experimental set-up

- synth1 generates A_1
- synth2 generates a set of A_2’s
- LSNA measures all A_1’s, B_1’s, A_2’s, B_2’s
Interpretation of the data

- IQ-plots of the A_2’s and B_2’s for a constant A_1 (x-axis = real part, y-axis = imaginary part)
Phase normalization is good

- Normalize the phases relative to A_1

$$P = e^{i \arg(A_1)}$$
Varying the amplitude of A_1
Varying the amplitude of A_2

$B_2.P^{-1} (V)$

$A_2.P^{-1} (V)$

* Linear dependency versus A_2
Data interpretation as loadpull

Increasing amplitude of A_1
Classic S-parameter description

\[B_2 \cdot P^{-1} (V) \]

- \[B_2 = S_{21} (|A_1|) \cdot A_1 + S_{22} \cdot A_2 \]
Simple “Hot S_{22}” description

$B_2 \cdot P^{-1} (V)$

- $B_2 = S_{21}(|A_1|) \cdot A_1 + S_{22}(|A_1|) \cdot A_2$
Model linearity & squeezing

• We look for a mathematical model which
 – is linear (superposition valid)
 – squeezes

• Squeezing implies that the phase of A_2P^{-1} matters

• We need different coefficients for the real and the imaginary part of A_2P^{-1}

• More elegant expression results when using A_2P^{-1} and its conjugate
Mathematical expression

- \(B_2.P^{-1} = S_{21}(|A_1|).A_1.P^{-1} + S_{22}(|A_1|).A_2.P^{-1} + R_{22}(|A_1|).\text{conjugate}(A_2.P^{-1}) \)

- \(B_2 = S_{21}(|A_1|).A_1 + S_{22}(|A_1|).A_2 + R_{22}(|A_1|).P^2.\text{conjugate}(A_2) \)
Extended “Hot S_{22}”

\[B_2 = S_{21}(|A_1|)A_1 + S_{22}(|A_1|)A_2 + R_{22}(|A_1|)P^2\text{.conjugate}(A_2) \]
Quadratic “Hot S_{22}”

- Further improvement is possible by using a polynomial in A_2 and $\text{conj}(A_2)$
- E.g.: quadratic “Hot S_{22}”
 \[B_2 = F.P + G.A_2 + H.P^2.\text{conj}(A_2) + K.P^{-1}.A_2^2 + L.P^3.\text{conj}(A_2)^2 + M.P.A_2.\text{conj}(A_2) \]
- Note the presence of the P factors
 (theory of describing functions)
Comparison (highest A_1 amplitude)

$B_2.P^{-1}$ (V)

Classic S_{22}

Extended “Hot S_{22}”

Simple “Hot S_{22}”

Quadratic “Hot S_{22}”
Conclusion

- An accurate “Hot S_{22}” exists
- It has a coefficient for the conjugate of $A_2 P^{-1}$
- It can accurately be measured
- It describes the relationship between A_2 and B_2 under large-signal excitation
More information

- More detailed information on this kind of measuring and modeling techniques:

 http://users.skynet.be/jan.verspecht